Calcium hydride, CaH2, reacts with water to form hydrogen gas:
CaH2(s)+2H2O(l)→Ca(OH)2(aq)+2H2(g)
This reaction is sometimes used to inflate life rafts, weather balloons, and the like, where a simple, compact means of generating H2 is desired.

How many grams of CaH2 are needed to generate 145 L of H2 gas if the pressure of H2 is 823 torr at 21 ∘C?

Respuesta :

znk

Answer:

[tex]\large \boxed{\text{137 g CaH}_{2}}[/tex]

Explanation:

To solve this problem, we can use the Ideal Gas Law:

pV = nRT

1. Collect the data in one place:

M_r:   42.09

           CaH₂ +2H₂O ⟶ Ca(OH)₂ +2H₂

p = 823 torr; V = 145 L; T = 21 °C

2. Convert temperature to kelvins

T = (21 +273.15) K = 294.15 K

3. Convert torrs to atmospheres.

[tex]p = \text{823 torr} \times \dfrac{\text{1 atm}}{\text{760 torr }} = \text{1.083 atm}[/tex]

4 Calculate the moles of H₂.

[tex]\begin{array}{rcl}\text{1.083 atm} \times \text{145 L} & = &n \times 0.08206 \text{ L}\cdot\text{atm}\cdot\text{K}^{-1}\text{mol}^{-1} \times \text{294.15 K}\\157.0 & = &24.14n \text{ mol}^{-1} \\n & = & \dfrac{157.0}{24.14 \text{ mol}^{-1} }\\\\ & = & \text{6.505 mol}\\\end{array}[/tex]

5. Calculate the moles of CaH₂

[tex]\text{Moles of CaH}_{2} = \text{6.505 mol H}_{2} \times \dfrac{\text{1 mol CaH}_{2}}{\text{2 mol H}_{2}} = \text{3.253 mol CaH}_{2}[/tex]

6. Calculate the mass of CaH₂

[tex]\text{Mass of CaH}_{2} = \text{3.253 mol CaH}_{2} \times \dfrac{\text{42.09 g CaH}_{2}}{\text{1 mol CaH}_{2}} = \text{137 g CaH}_{2}\\\text{The reaction needs $\large \boxed{\textbf{137 g CaH}_{\mathbf{2}}}$}[/tex]