Answer: The correct answer is [tex]3Ag^+(aq.)+Cr(s)\rightarrow 3Ag(s)+Cr^{3+}(aq.);E^o_{cell}=+1.53V[/tex]
Explanation:
We are given:
[tex]Cr^{3+}(aq.)+3e^-\rightarrow Cr(s);E^o=-0.73V\\\\Ag^+(aq.)+e^-\rightarrow Ag(s);E^o=+0.80V[/tex]
The substance having highest positive [tex]E^o[/tex] potential will always get reduced and will undergo reduction reaction. Here, silver will always undergo reduction reaction will get reduced.
Chromium will undergo oxidation reaction and will get oxidized.
The half reactions for the above cell is:
Oxidation half reaction: [tex]Cr(s)\rightarrow Cr^{3+}+3e^-;E^o_{Cr^{3+}/Cr}=-0.73V[/tex]
Reduction half reaction: [tex]Ag^{+}+e^-\rightarrow Ag(s);E^o_{Ag^{+}/Ag}=0.80V[/tex] ( × 3)
Net equation: [tex]3Ag^+(aq.)+Cr(s)\rightarrow 3Ag(s)+Cr^{3+}(aq.)[/tex]
Oxidation reaction occurs at anode and reduction reaction occurs at cathode.
To calculate the [tex]E^o_{cell}[/tex] of the reaction, we use the equation:
[tex]E^o_{cell}=E^o_{cathode}-E^o_{anode}[/tex]
Putting values in above equation, we get:
[tex]E^o_{cell}=0.80-(-0.73)=1.53V[/tex]
Hence, the correct answer is [tex]3Ag^+(aq.)+Cr(s)\rightarrow 3Ag(s)+Cr^{3+}(aq.);E^o_{cell}=+1.53V[/tex]