If 25 kg of ice at 0C is combined with 4 kg of steam at 100C, what will be the final equilibrium temperature (in C) of the system? Latent heat of fusion of ice = 3.34 x 105 J.kg-1 Latent heat of steam = 2.23 x 106 J.kg-1 Specific heat of water = 4180 J.kg-1.K-1

Respuesta :

Try the suggested option; answer is marked with red colour (18.4953 °C).

All the details are in the attached picture.

Ver imagen evgeniylevi

The equilibrium temperature of the system is required.

The equilibrium temperature of the mixture is [tex]18.48^{\circ}\text{C}[/tex].

[tex]m_i[/tex] = Mass of ice = 25 kg

[tex]m_s[/tex] = Mass of steam = 4 kg

[tex]T_i[/tex] = Temperature of ice = [tex]0^{\circ}\text{C}[/tex]

[tex]T_s[/tex] = Temperature of steam = [tex]100^{\circ}\text{C}[/tex]

[tex]L_f[/tex] = Latent heat of fusion = [tex]3.34\times 10^5\ \text{J/kg}[/tex]

[tex]L_v[/tex] = Latent heat of vaporization = [tex]2.23\times 10^6\ \text{J/kg}[/tex]

[tex]c_w[/tex] = Specific heat of water = [tex]4180\ \text{J/kg}^{\circ}\text{C}[/tex]

The heat balance of the system will be

[tex]m_iL_f+m_ic_w(T-T_i)=m_sL_v+m_sc_w(T_s-T)\\\Rightarrow m_iL_f+m_ic_wT-m_ic_wT_i=m_sL_v+m_sc_wT_s-m_sc_wT\\\Rightarrow T=\dfrac{m_ic_wT_i+m_sL_v+m_sc_wT_s-m_iL_f}{m_ic_w+m_sc_w}\\\Rightarrow T=\dfrac{25\times 4180\times 0+4\times 2.23\times 10^6+4\times 4180\times 100-25\times 3.34\times 10^5}{25\times 4180+4\times 4180}\\\Rightarrow T=18.49^{\circ}\text{C}[/tex]

The equilibrium temperature of the mixture is [tex]18.49^{\circ}\text{C}[/tex].

Learn more:

https://brainly.com/question/17110796

https://brainly.com/question/16144685