Each plate of a parallel-plate air-filled capacitor has an area of 2×10−3 m2, and the separation of the plates is 5×10−2 mm. An electric field of 8.5 ×106 V/m is present between the plates. What is the surface charge density on the plates? (ε 0 = 8.85 × 10-12 C2/N · m2)

Respuesta :

Answer:

The surface charge density on the plate, [tex]\sigma=7.5\times 10^{-5}\ C/m^2[/tex]

Explanation:

It is given that,

Area of parallel plate capacitor, [tex]A=2\times 10^{-3}\ m^2[/tex]

Separation between the plates, [tex]d=5\times 10^{-2}\ mm[/tex]

Electric field between the plates, [tex]E=8.5\times 10^{6}\ V/m[/tex]

We need to find the surface charge density on the plates. The formula for electric field is given by :

[tex]E=\dfrac{\sigma}{\epsilon}[/tex]

Where

[tex]\sigma[/tex] = surface charge density

[tex]\sigma=E\times \epsilon[/tex]

[tex]\sigma=8.5\times 10^{6}\ V/m\times 8.85\times 10^{-12}\ C^2/Nm^2[/tex]

[tex]\sigma=0.000075\ C/m^2[/tex]

[tex]\sigma=7.5\times 10^{-5}\ C/m^2[/tex]

Hence, this is the required solution.