Answer:
C
Step-by-step explanation:
Given
cosB = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{BC}{A B}[/tex] = [tex]\frac{255}{257}[/tex]
Then the hypotenuse AB = 257 and BC = 255
sinA = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{BC}{AB}[/tex] = [tex]\frac{255}{257}[/tex]
A = [tex]sin^{-1}[/tex] ([tex]\frac{255}{257}[/tex]) = 82.8° → C