A cylinder has a radius of 10 cm and a height of 9 cm. A cone has a radius of 10 cm and a height of 9 cm. Show that the volume of a cylinder is three times the volume of the cone. someone help me out

Respuesta :

Step-by-step explanation:

We start with the formulas for the volumes of a cylinder and a cone.

Cylinder:

[tex] V_{cylinder} = \pi r^2 h [/tex]

Cone:

[tex] V_{cone} = \dfrac{1}{3} \pi r^2 h [/tex]

Now we calculate the two volumes.

Cylinder:

[tex] V_{cylinder} = \pi r^2 h [/tex]

[tex] V_{cylinder} = \pi \times (10~cm)^2 \times 9~cm [/tex]

[tex] V_{cylinder} = \pi \times 100~cm^2 \times 9~cm [/tex]

[tex] V_{cylinder} = 900 \pi~cm^3 [/tex]

Cone:

[tex] V_{cone} = \dfrac{1}{3} \pi \times (10~cm)^2 \times 9~cm [/tex]

[tex] V_{cone} = \dfrac{1}{3} \pi \times 100~cm^2 \times 9~cm [/tex]

[tex] V_{cone} = 300 \pi~cm^3 [/tex]

The volume of the cylinder is 900pi cm^3, and the volume of the cone is 300pi cm^3.

Now we divide the volume of the cylinder by the volume of the cone.

[tex] \dfrac{900 \pi~cm^3}{300 \pi~cm^3} = 3 [/tex]

Dividing the volume of the cylinder by the volume of the cone gives us 3, showing that the volume of the cylinder is 3 times the volume of the cone.