bm42400
contestada

Given: f(x) = x - 7 and h(x) = 2x + 3
Write the rule for h(f(x)). h(f(x)) = 2x - 11 h(f(x)) = 2x - 7 h(f(x)) = 2x - 4 h(f(x)) = 3x - 4

Respuesta :

ANSWER


[tex]h(f(x))=2x-11[/tex]


EXPLANATION


Given [tex]f(x)=x-7[/tex]


and

[tex]h(x)=2x+3[/tex]


We want to find


[tex]h(f(x))=h(x-7)[/tex]

This means we substitute the function [tex]f[/tex] in to another function [tex]h[/tex] and evaluate.

This implies that;

[tex]h(f(x))=2(x-7)+3[/tex]


We expand the parenthesis to obtain;


[tex]h(f(x))=2x-14+3[/tex]

We simplify further to obtain;

[tex]h(f(x))=2x-11[/tex]


Hence the correct answer is A

Answer:

The correct answer option is h(f(x)) = 2x - 11

Step-by-step explanation:

We are given two functions:

[tex]f(x) = x-7[/tex]  and  [tex]h(x) = 2x+3[/tex]

and we supposed to find another function which is [tex]h(f(x))[/tex].

To find [tex]h(f(x))[/tex], we need to substitute the value of [tex]f(x)[/tex] in the other function i.e. [tex]h(x)[/tex] to get:

[tex]h(f(x)) = h(x-7)[/tex]

[tex]h(f(x))= 2(x-7)+3[/tex]

[tex]h(f(x))=2x-14+3[/tex]

[tex]h(f(x)) 2x-11[/tex]

Therefore, the correct answer is h(f(x)) = 2x - 11.