Respuesta :
Answer:-
0.946 atm
Explanation:-
From the question we see,
First day pressure P 1 = 0.983 atm
First day temperature T 1 =15 C + 273 = 288 K
First day volume V 1 =285 mL
Second Day volume V 2 = 292 mL
Second day Temperature T 2 = 11 C + 273 = 284 K
Using the relation
P 1 V 1 / T 1 = P 2 V 2 / T 2
We get Second Pressure P 2 = P 1 V 1 T 2 / ( T 1 V 2)
= 0.983 atm x 285 mL x 284 K / ( 288 K x 292 mL)
= 0.946 atm
Hence the new pressure of the gas on the second day is 0.946 atm
According to the combined gas laws,
[tex] \frac{P_{1}V_{1}}{T_{1}}=\frac{P_{2}V_{2}}{T_{2}} [/tex]
[tex] P_{1} = 0.983 atm [/tex]
[tex]V_{1}=285 mL [/tex]
[tex] T_{1} = 15^{0} + 273 = 288 K [/tex]
[tex] P_{2} = ? [/tex]
[tex] V_{2}=292 mL [/tex]
[tex] T_{2} = 11^{0} + 273 = 284 K [/tex]
Plugging in the values and solving for the final pressure:
[tex] \frac{0.983 atm(285 mL)}{288 K} = \frac{P_{2}(292 mL)}{284 K} [/tex]
Final pressure [tex] P_{2} = 0.946 atm [/tex]