Respuesta :
V=(pi)r2h and we know that h = 2r so we can replace h with 2r and we get V = (pi)r2(2r) V=2(pi)r3 Hope this helps
Answer:
[tex]r(v)=\sqrt{\frac{3v}{20\pi } }[/tex] inches
Step-by-step explanation:
Volume of the cone v = [tex]\frac{1}{3}\pi r^{2} h[/tex] cubic inches.
Conical artifact is 20 inches tall.
So, h = 20
Now,
[tex]\frac{1}{3}\pi r^{2} h[/tex] = v
[tex]\frac{1}{3}\pi r^{2}(20)=v[/tex]
[tex]r^{2}=\frac{3v}{20\pi }[/tex]
[tex]r(v)=\sqrt{\frac{3v}{20\pi } }[/tex] inches