Respuesta :
[tex]\log_38-\log_32^3=3\log_32\approx3\cdot0.631=1.893\\\\Used:\log_ab^n=n\cdot\log_ab[/tex]
Answer:
1.893
Step-by-step explanation:
[tex]log_3(8)[/tex]
first we write 8 in exponential form
8=2*2*2= 2*3
[tex]log_3(2^3)[/tex]
Now we apply log property
[tex]log_b(a^n)= n log_b(a)[/tex]
As per this property we move the exponent before log
[tex]log_3(2^3)= 3 log_3(2)[/tex]
Given log_3(2) = 0.631
Plug in the value
[tex]log_3(2^3)= 3 log_3(2)= 3*0.631= 1.893[/tex]