Respuesta :
For this case we have the following equation:
-2y2 + 6y = -2
Rewriting we have:
-2y2 + 6y + 2 = 0
Using the quadratic formula we have:
x = (- b +/- root (b ^ 2 - 4 * a * c)) / (2 * a)
Substituting values:
x = (- (6) +/- root ((6) ^ 2 - 4 * (- 2) * (2))) / (2 * (- 2))
Rewriting:
x = (- 6 +/- root (36 + 16)) / (- 4)
x = (- 6 +/- root (52)) / (- 4)
x = (- 6 +/- root (4 * 13)) / (- 4)
x = (- 6 +/- 2 * root (13)) / (- 4)
x = (- 3 +/- root (13)) / (- 2)
The roots are:
x1 = (- 3 - root (13)) / (- 2)
x2 = (- 3 + root (13)) / (- 2)
Rewriting:
x1 = -0.3
x2 = 3.3
Answer:
–0.3, 3.3
-2y2 + 6y = -2
Rewriting we have:
-2y2 + 6y + 2 = 0
Using the quadratic formula we have:
x = (- b +/- root (b ^ 2 - 4 * a * c)) / (2 * a)
Substituting values:
x = (- (6) +/- root ((6) ^ 2 - 4 * (- 2) * (2))) / (2 * (- 2))
Rewriting:
x = (- 6 +/- root (36 + 16)) / (- 4)
x = (- 6 +/- root (52)) / (- 4)
x = (- 6 +/- root (4 * 13)) / (- 4)
x = (- 6 +/- 2 * root (13)) / (- 4)
x = (- 3 +/- root (13)) / (- 2)
The roots are:
x1 = (- 3 - root (13)) / (- 2)
x2 = (- 3 + root (13)) / (- 2)
Rewriting:
x1 = -0.3
x2 = 3.3
Answer:
–0.3, 3.3