Respuesta :
We need to simplify this expression:
[tex] \frac{4x-4}{x-1} [/tex]
So, we will call this expression as:
[tex] f(x) = \frac{4x-4}{x-1} [/tex]
We can write this equation like this:
[tex]f(x) = \frac{4(x-1)}{(x-1)} [/tex]
So, if we simplify it, this can be written like this:
f(x) = 4 but given that the denominator can't be zero, then:
[tex] x-1 \neq 0 [/tex] ∴ [tex]x \neq 1[/tex]
Therefore:
f(x) = 4 if and only if [tex]x \neq 1[/tex]
[tex] \frac{4x-4}{x-1} [/tex]
So, we will call this expression as:
[tex] f(x) = \frac{4x-4}{x-1} [/tex]
We can write this equation like this:
[tex]f(x) = \frac{4(x-1)}{(x-1)} [/tex]
So, if we simplify it, this can be written like this:
f(x) = 4 but given that the denominator can't be zero, then:
[tex] x-1 \neq 0 [/tex] ∴ [tex]x \neq 1[/tex]
Therefore:
f(x) = 4 if and only if [tex]x \neq 1[/tex]