Respuesta :
We can find the solution using the quadratic formula:
[tex]x= \frac{-b+- \sqrt{ b^{2} -4ac} }{2a} [/tex]
b =coefficient of x term = 5
a = coefficient of squared term = 1
c = constant term = -5
Using the values in the above formula we get:
[tex]x= \frac{-5+- \sqrt{25-4(1)(-5)} }{2(1)} \\ \\ x= \frac{-5+- \sqrt{45} }{2} \\ \\ x= \frac{-5+-3 \sqrt{5} }{2} \\ \\ x= \frac{-5+3 \sqrt{5} }{2}, x= \frac{-5-3 \sqrt{5} }{2} [/tex]
[tex]x= \frac{-b+- \sqrt{ b^{2} -4ac} }{2a} [/tex]
b =coefficient of x term = 5
a = coefficient of squared term = 1
c = constant term = -5
Using the values in the above formula we get:
[tex]x= \frac{-5+- \sqrt{25-4(1)(-5)} }{2(1)} \\ \\ x= \frac{-5+- \sqrt{45} }{2} \\ \\ x= \frac{-5+-3 \sqrt{5} }{2} \\ \\ x= \frac{-5+3 \sqrt{5} }{2}, x= \frac{-5-3 \sqrt{5} }{2} [/tex]
Answer:We can find the solution using the quadratic formula:
x= \frac{-b+- \sqrt{ b^{2} -4ac} }{2a}
b =coefficient of x term = 5
a = coefficient of squared term = 1
c = constant term = -5
Using the values in the above formula we get:
x= \frac{-5+- \sqrt{25-4(1)(-5)} }{2(1)} \\ \\ x= \frac{-5+- \sqrt{45} }{2} \\ \\ x= \frac{-5+-3 \sqrt{5} }{2} \\ \\ x= \frac{-5+3 \sqrt{5} }{2}, x= \frac{-5-3 \sqrt{5} }{2}
Step-by-step explanation: