Respuesta :
Answer:
The answer is 2
Step-by-step explanation:
Rate of change of function is given by :
[tex]\frac{(f(x_{2})-f(x_{1}))}{x_{2}-x_{1}}[/tex]
For function y = 6,
rate of change =
[tex]=\frac{(f(x_{2})-f(x_{1}))}{x_{2}-x_{1}}\\=\frac{6-6}{x_{2}-x_{1}}\\=0[/tex]
because the function is independent of x.
For function y = 2·x + 7,
rate of change =
[tex]=\frac{(f(x_{2})-f(x_{1}))}{x_{2}-x_{1}}\\=\frac{2\cdot x_{2}+7-2\cdot x_{1}-7}{x_{2}-x_{1}}\\=\frac{2\cdot x_{2}-2\cdot x_{1}}{x_{2}-x_{1}}\\=\frac{2\cdot (x_{2}-x_{1})}{x_{2}-x_{1}}\\=2[/tex]
So, the rate of change of 2 is greater than rate of change of function 1 by 2 - 0 = 2.