Respuesta :
Using this equation, we get that it would take 1612 years for only 5 grams to be present.
Substituting 5 for R, we have
[tex]5=10e^{-0.00043t}[/tex]
Dividing both sides by 10,
[tex]\frac{5}{10}=\frac{10e^{-0.00043t}}{10} \\ \\0.5=e^{-0.00043t}[/tex]
Taking the natural log of both sides, we have
[tex]\ln{0.5}=\ln{e^{-0.00043t}} \\ \\ \ln{0.5}=-0.00043t[/tex]
Dividing both sides by -0.00043, we have
[tex]\frac{\ln{0.5}}{-0.00043}=t \\ \\1611.9=t \\ \\1612\approx t[/tex]
Substituting 5 for R, we have
[tex]5=10e^{-0.00043t}[/tex]
Dividing both sides by 10,
[tex]\frac{5}{10}=\frac{10e^{-0.00043t}}{10} \\ \\0.5=e^{-0.00043t}[/tex]
Taking the natural log of both sides, we have
[tex]\ln{0.5}=\ln{e^{-0.00043t}} \\ \\ \ln{0.5}=-0.00043t[/tex]
Dividing both sides by -0.00043, we have
[tex]\frac{\ln{0.5}}{-0.00043}=t \\ \\1611.9=t \\ \\1612\approx t[/tex]
It will take 700 years to remain only 5 grams of radium
The function is given as:
[tex]R=10e^{-0.00043t[/tex]
When the remaining gram is 5 grams, the equation of the function becomes
[tex]5=10e^{-0.00043t[/tex]
Divide both sides by 10
[tex]0.5=e^{-0.00043t[/tex]
Take the logarithm of both sides
[tex]\log(0.5)=-0.00043t[/tex]
Using a calculator, evaluate log(0.5)
[tex]-0.30102999566 =-0.00043t[/tex]
Divide both sides by -0.00043t
[tex]t = 700.069757349[/tex]
Approximate
[tex]t = 700[/tex]
Hence, it will take 700 years to remain only 5 grams of radium
Read more about exponential functions at:
https://brainly.com/question/11464095