Respuesta :

The function
[tex]h(x)=\dfrac{9x}{x(x^{2}-36)}[/tex]
is all real numbers except those that make the denominator zero.

The domain is "all real numbers except {-6, 0, +6}".

Answer:

The function domain is:

[tex]x<-6\quad \mathrm{or}\quad \:-6<x<0\quad \mathrm{or}\quad \:0<x<6\quad \mathrm{or}\quad \:x>6[/tex]

Step-by-step explanation:

The domain of a function is the set of input or argument values for which the function is  real and defined

Re-write the function as [tex]h(x)=\frac{9x}{x(x^{2}-6^{2})}[/tex]

since, (a²-b²) =(a+b)(a-b)

[tex]h(x)=\frac{9x}{x(x-6)(x+6)}[/tex]

Find undefined singularity points  x=0, x=-6, x=6

The function domain is:

[tex]x<-6\quad \mathrm{or}\quad \:-6<x<0\quad \mathrm{or}\quad \:0<x<6\quad \mathrm{or}\quad \:x>6[/tex]