Respuesta :

What is the domain of y = sec(x)?

Domain:
All real numbers except pi/1 + n*Pi

Range:
(-inf , -1] U [1 , + inf)

Answer:

[tex]\mathbb{R}-(n\pi+\frac{\pi}{2})[/tex]

Step-by-step explanation:

We have, [tex]\text{y}=\text{sec} x[/tex]

This can also be written as [tex]\text{y}=\frac{1}{\text{cos} x}[/tex]

For this to be defined, [tex]\text{cos}x\neq 0[/tex]

So, the function is defined for all real numbers except when [tex]\text{cos}x=0[/tex]

i.e., for [tex]x=(2n+1)\frac{\pi }{2}\text{or}x=n\pi+\frac{\pi}{2}[/tex]

Therefore, the domain of [tex]\text{y}=\text{sec} x[/tex] is [tex]\mathbb{R}-(n\pi+\frac{\pi}{2})[/tex]