Question 21 [t-interval] a random sample of size 18 is drawn from a population that is normally distributed. the sample mean is 58.5, and the sample standard deviation is found to be 11.5. determine a 95% confidence interval about population mean.
a. [52.78,64.22]
b. [53.78,63.22]
c. [53.18,63.81]
d. [54.04,62.96]

Respuesta :

Answer:

Option a. [52.78,64.22]

Step-by-step explanation:

We are given that a random sample of size 18 is drawn from a population that is normally distributed.

Sample mean is 58.5, and the sample standard deviation is found to be 11.5 i.e., X bar = 58.5  and  s = 11.5

The pivotal quantity for calculating 95% confidence interval is;

               [tex]\frac{Xbar - \mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]

So, 95% confidence interval about population mean is given by;

P(-2.110 < [tex]t_1_7[/tex] < 2.110) = 0.95

P(-2.110 < [tex]\frac{Xbar - \mu}{\frac{s}{\sqrt{n} } }[/tex] < 2.110) = 0.95

P(-2.110 * [tex]\frac{s}{\sqrt{n} }[/tex] < [tex]{Xbar - \mu}[/tex] < 2.110 * [tex]\frac{s}{\sqrt{n} }[/tex] ) = 0.95

P(X bar - 2.110 * [tex]\frac{s}{\sqrt{n} }[/tex] < [tex]\mu[/tex] < X bar + 2.110 * [tex]\frac{s}{\sqrt{n} }[/tex] ) = 0.95

95% confidence interval about [tex]\mu[/tex] = [ X bar - 2.110 * [tex]\frac{s}{\sqrt{n} }[/tex] , X bar + 2.110 * [tex]\frac{s}{\sqrt{n} }[/tex] ]

                                                   = [ 58.5 - 2.110 * [tex]\frac{11.5}{\sqrt{18} }[/tex] , 58.5 + 2.110 * [tex]\frac{11.5}{\sqrt{18} }[/tex] ]

                                                   = [ 52.78 , 64.22 ]

Therefore, 95% confidence interval about population mean is [52.78 , 64.22].