Respuesta :
The standard error (SE) of the sampling distribution difference between two proportions is given by:
[tex]p= \frac{p_1n_1+p_2n_2}{n_1+n_2} [/tex]
Given that at one vehicle inspection station, 13 of 52 trucks and 11 of 88 cars failed the emissions test.
[tex]p_1= \frac{13}{52} =0.25 \\ \\ p_2= \frac{11}{88} =0.125 \\ \\ n_1=52 \\ \\ n_2=88 \\ \\ p= \frac{0.25(52)+0.125(88)}{52+88} \\ \\ = \frac{13+11}{140} = \frac{24}{140} =0.1714[/tex]
[tex]SE=\sqrt{0.1714(1-0.1714)\left(\frac{1}{52}+\frac{1}{88}\right)} \\ \\ = \sqrt{0.1714(0.8286)(0.0192+0.0114)} \\ \\ = \sqrt{0.1714(0.8386)(0.0306)} = \sqrt{0.0044} \\ \\ =0.0663[/tex]
[tex]SE=\sqrt{p(1-p)\left(\frac{1}{n_1}+\frac{1}{n_2}\right)}[/tex]
where p is the pooled sample proportion, [tex]n_1[/tex] is the size of sample 1, and [tex]n_2[/tex] is the size of sample 2.[tex]p= \frac{p_1n_1+p_2n_2}{n_1+n_2} [/tex]
Given that at one vehicle inspection station, 13 of 52 trucks and 11 of 88 cars failed the emissions test.
[tex]p_1= \frac{13}{52} =0.25 \\ \\ p_2= \frac{11}{88} =0.125 \\ \\ n_1=52 \\ \\ n_2=88 \\ \\ p= \frac{0.25(52)+0.125(88)}{52+88} \\ \\ = \frac{13+11}{140} = \frac{24}{140} =0.1714[/tex]
[tex]SE=\sqrt{0.1714(1-0.1714)\left(\frac{1}{52}+\frac{1}{88}\right)} \\ \\ = \sqrt{0.1714(0.8286)(0.0192+0.0114)} \\ \\ = \sqrt{0.1714(0.8386)(0.0306)} = \sqrt{0.0044} \\ \\ =0.0663[/tex]
The two given proportions are
[tex]p_1=\frac{13}{52}=0.25[/tex] and [tex]p_2=\frac{11}{88}=0.125[tex].
The standard error is given by the formula
[tex]SE=\sqrt{\frac{p_1\left(1-p_1\right)}{n_1}+\frac{p_2\left(1-p_2\right)}{n_2}}[/tex]
Substituting the given values, we have
[tex]SE=\sqrt{\frac{0.25\left(1-0.25\right)}{52}+\frac{0.125\left(1-0.125\right)}{88}=0.0696}[/tex]
Therefore, the standard error is 0.0696.
[tex]p_1=\frac{13}{52}=0.25[/tex] and [tex]p_2=\frac{11}{88}=0.125[tex].
The standard error is given by the formula
[tex]SE=\sqrt{\frac{p_1\left(1-p_1\right)}{n_1}+\frac{p_2\left(1-p_2\right)}{n_2}}[/tex]
Substituting the given values, we have
[tex]SE=\sqrt{\frac{0.25\left(1-0.25\right)}{52}+\frac{0.125\left(1-0.125\right)}{88}=0.0696}[/tex]
Therefore, the standard error is 0.0696.