Respuesta :
Let the ratio constant be x. Therefore two adjacent sides of the parallelogram are 2x cm and 5x cm in length.
Then, perimeter = 2 (sum of the adjacent sides)
[tex] = > 70 = 2(2x + 5x) \\ \: \: \: \: \: \: \: \: 70 = 2(7x) \\ \: \: \ \: \: \: \: \: 35 = 7x \\ \: \: \: \: \: \: \: \: \: \: x = 5[/tex]
Hence, the sides of the parallelogram are
2 × 5 cm = 10 cm
5 × 5 cm = 25 cm
Then, perimeter = 2 (sum of the adjacent sides)
[tex] = > 70 = 2(2x + 5x) \\ \: \: \: \: \: \: \: \: 70 = 2(7x) \\ \: \: \ \: \: \: \: \: 35 = 7x \\ \: \: \: \: \: \: \: \: \: \: x = 5[/tex]
Hence, the sides of the parallelogram are
2 × 5 cm = 10 cm
5 × 5 cm = 25 cm
GivEn:
⠀⠀⠀⠀⠀⠀⠀
- The ratio of two sides of a parallelogram is 2 : 5.
- Perimeter of parallelogram = 70 cm
⠀⠀⠀⠀⠀⠀⠀
To find:
⠀⠀⠀⠀⠀⠀⠀
- Sides of parallelogram?
⠀⠀⠀⠀⠀⠀⠀
Solution:
⠀⠀⠀⠀⠀⠀⠀
☯ Let two adjacent sides of parallelogram be 2x and 5x.
⠀⠀⠀⠀⠀⠀⠀
⋆ Refrence of image is shown in diagram:
⠀⠀⠀⠀⠀⠀⠀
[tex]\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(1,1)(1,1)(6,1)\put(0.4,0.5){\bf D}\qbezier(1,1)(1,1)(1.6,4)\put(6.2,0.5){\bf C}\qbezier(1.6,4)(1.6,4)(6.6,4)\put(1,4){\bf A}\qbezier(6,1)(6,1)(6.6,4)\put(6.9,3.8){\bf B}\put(0.7,2.5){\sf 2x}\put(3,0.5){\sf 5x}\end{picture}[/tex]
⠀⠀⠀⠀⠀⠀⠀
[tex]\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\[/tex]
- Perimeter of parallelogram = 70 cm
⠀⠀⠀⠀⠀⠀⠀
[tex]\dag\;{\underline{\frak{We\;know\;that,}}}\\ \\[/tex]
[tex]\star\:{\boxed{\sf{\purple{Perimeter_{\;(parallelogram)} = 2 \times (sum\:of\: adjacent\:sides)}}}}\\ \\[/tex]
[tex]:\implies\sf 2 \times (2x + 5x) = 70\\ \\[/tex]
[tex]:\implies\sf 2 \times 7x = 70\\ \\[/tex]
[tex]:\implies\sf 14x = 70\\ \\[/tex]
[tex]:\implies\sf x = \cancel{ \dfrac{70}{14}}\\ \\[/tex]
[tex]:\implies{\boxed{\sf{\pink{x = 5}}}}\;\bigstar\\ \\[/tex]
Therefore,
⠀⠀⠀⠀⠀⠀⠀
- 2x = 2 × 5 = 10 cm
- 5x = 5 × 5 = 25 cm
⠀⠀⠀⠀⠀⠀⠀
[tex]\therefore[/tex] Hence, Adjacent sides of parallelogram are 10 cm and 25 cm.