Respuesta :

The equivalent expression to 
(4p^-4q)^-2/10pq^-3
=(4^-2p^(-4*-2)q^-2)/(10pq^-3)
=(4^-2p^8q^-2)/(10pq^-3)
=[p^8q^-2/16]/[10pq^-3]
=p^7q/160

Answer: C]p^7q/160

Answer: C. [tex]=\frac{p^7q}{160} .[/tex]


Step-by-step explanation: Given expression [tex]\frac{(4p^{-4}q)^{-2}}{10pq^{-3}}[/tex].

Applying exponents of exponent rule [tex](ab)^c = a^cb^c[/tex] and

negative power rule [tex](a)^{n} = \frac{1}{a^n}[/tex].

[tex](4p^{-4}q)^{-2} = 4^{-2}p^{-4\times(-2)q^{-2}} = \frac{1\times p^8}{4^2q^2}[/tex]

= [tex]\frac{(4p^{-4}q)^{-2}}{10pq^{-3}}= \frac{1\times p^8q^3}{10\times 4^2pq^2}[/tex]

[tex]= \frac{ p^8q^3}{160pq^2}[/tex]

Apply quotient rule of exponents [tex]\frac{a^m}{a^n} = a^{m-n}[/tex].

[tex]\frac{ p^8q^3}{160pq^2}= \frac{p^{8-1}q^{3-2}}{160}[/tex]

[tex]=\frac{p^7q}{160} .[/tex]

Therefore, correct option is C. [tex]=\frac{p^7q}{160} .[/tex]