Respuesta :
A function is its own inverse if it is symmetrical about the line y=x. This is the case for functions t, y, w. Function d(x) = 1/x^2 is symmetrical about the line x=0, but is not symmetrical about the line y=x.
The appropriate choices are ...
a. t(p) = p
b. y(j) = -1/j
c. w(y) = -2/y
The appropriate choices are ...
a. t(p) = p
b. y(j) = -1/j
c. w(y) = -2/y
Answer:
a,b and c.
Step-by-step explanation:
We have to find the the functions that are their own inverses.
a.t(p)=p
Then the inverse function of given function is
[tex]p=t^{-1}(p)[/tex]
Therefore, the given function is inverse function of itself.
Hence, option a is true.
b.y(j)=[tex]-\frac{1}{j}
Let y(j)=y then we get
[tex]y=-\frac{1}{j}[/tex]
[tex]j=-\frac{1}{y}[/tex]
[tex]j=-\frac{1}{y(j)}[/tex]
[tex]j=-\frac{1}{\frac{-1}{j}}[/tex]
[tex]j=j[/tex]
Hence, the function is inverse of itself.Therefore, option b is true.
c.[tex]w(y)=-\frac{2}{y}[/tex]
Suppose that w(y)=w
Then [tex]w=-\frac{2}{y}[/tex]
[tex]y=-\frac{2}{w}[/tex]
[tex]w(y)=-\frac{2}{-\frac{2}{w}}[/tex]
[tex]w(y)=w[/tex]
[tex]w(y)=-\frac{2}{y}[/tex]
Hence, the function is inverse function of itself.Therefore, option c is true.
d.[tex]d(p)=\frac{1}{x^2}[/tex]
Let d(p)=d
If we replace [tex]\frac{1}{x^2}by p then we get
[tex]d=\frac{1}{x^2}[/tex]
[tex]x^2=\frac{1}{d}[/tex]
[tex]x=\sqrt{\frac{1}{d}}[/tex]
[tex]x=\sqrt{\frac{1}{d(p)}[/tex]
Hence, the function is not self inverse function.Therefore, option d is false.