The point P(x,y) is on the terminal ray of angle theta. if theta is between pi radians and 3 pi/2 radians and csc theta=-5/2, what are the coordinates of P(x,y)?

Respuesta :

Solution:

As Given : [tex]\pi <Theta <\frac{3\pi}{2}[/tex]

360° =  2 π Radians

π Radian = 180 °

[tex]\frac{3\pi }{2} =270[/tex] degrees

Cosec ( theta) = [tex]\frac{Hypotenuse }{Perpendicular}=\frac{-5}{2}[/tex]

Let , Hypotenuse = - 5 k,  and Altitude = 2 k

By pythagorean theorem

Hypotenuse² =  Altitude² + Base²

(-5 k)²= (2 k)²  + Base²

25 k² - 4 k² = Base²

Base = 21 k²

Base = √21 k

Coordinates of P(x,y) = (-√21 : -2)

Ver imagen Аноним

Answer:

The answer is A

Step-by-step explanation:

edge 2021