Respuesta :

see the attached figure with letters to better understand the problem

Step 1

Find the length of BD

we know that

In the right triangle ABD

BD=AD ------> because is a [tex]45\°-90\°-45\°[/tex] triangle

so

[tex]BD=5\ units[/tex]

Step 2

Find the length of BC

In the right triangle BCD

[tex]sin(30\°)=\frac{BD}{BC}[/tex]

we have

[tex]sin(30\°)=\frac{1}{2}[/tex]

[tex]BD=5\ units[/tex]

[tex]BC=x\ units[/tex]

substitute the values and solve for x

[tex]\frac{1}{2}=\frac{5}{x}\\ \\x=5*2 \\ \\x=10\ units[/tex]

therefore

the answer is

The length of x is [tex]10\ units[/tex]

Ver imagen calculista

Answer:

D edge

Step-by-step explanation: