Respuesta :
[tex] \dfrac{x}{x+1} \ , \ \dfrac{7x}{x-1}[/tex]
[tex] \dfrac{x (x -1)}{(x+1)(x -1)} \ , \ \dfrac{7x(x+1)}{(x-1)(x+ 1)} [/tex]
We know that (a + b)(a - b) = a² - b²:
[tex]\dfrac{x (x -1)}{x^2 - 1}} \ , \ \dfrac{7x(x+1)} {x^2 - 1}[/tex]
Answer: LCD = ( x + 1) (x - 1)
[tex] \dfrac{x (x -1)}{(x+1)(x -1)} \ , \ \dfrac{7x(x+1)}{(x-1)(x+ 1)} [/tex]
We know that (a + b)(a - b) = a² - b²:
[tex]\dfrac{x (x -1)}{x^2 - 1}} \ , \ \dfrac{7x(x+1)} {x^2 - 1}[/tex]
Answer: LCD = ( x + 1) (x - 1)
[tex] \frac{x}{x + 1} [/tex], [tex] \frac{7x}{x - 1} [/tex]
To find the least common denominator, multiply [tex] \frac{x}{x + 1} [/tex] by (x - 1) and multiply [tex] \frac{7x}{x - 1} [/tex] by (x + 1).
(x + 1)(x - 1) = x² - x + x - 1 ⇒ x² - 1
x² - 1 is the LCD.
To find the least common denominator, multiply [tex] \frac{x}{x + 1} [/tex] by (x - 1) and multiply [tex] \frac{7x}{x - 1} [/tex] by (x + 1).
(x + 1)(x - 1) = x² - x + x - 1 ⇒ x² - 1
x² - 1 is the LCD.