Respuesta :
length x width = area
-> width = area / length
= (x^4 + 4x^3 + 3x^2 - 4x - 4) / (x^3 + 5x^2 + 8x +4)
= (x+2)^2*(x-1)(x+1) / (x+2)^2*(x+1)
= x-1
-> width = x-1
-> width = area / length
= (x^4 + 4x^3 + 3x^2 - 4x - 4) / (x^3 + 5x^2 + 8x +4)
= (x+2)^2*(x-1)(x+1) / (x+2)^2*(x+1)
= x-1
-> width = x-1
Answer:
[tex]x-1[/tex]
Step-by-step explanation:
Given : The area of a rectangle is [tex]x^4 + 4x^3 + 3x^2-4x - 4[/tex].
Length of rectangle = [tex]x^3 + 5x^2 + 8x + 4[/tex]
To Find: Width of rectangle
Solution:
Area of rectangle = [tex]Length \times width[/tex]
Substituting the values:
[tex]x^4 + 4x^3 + 3x^2-4x - 4=(x^3 + 5x^2 + 8x + 4) \times Width[/tex]
[tex]\frac{x^4 + 4x^3 + 3x^2-4x - 4}{x^3 + 5x^2 + 8x + 4}=Width[/tex]
[tex]x-1=Width[/tex]
Thus the width of the given rectangle is [tex]x-1[/tex]