Respuesta :
Answer
31.12 in
Explanation
To get the length required, lets first find angle mF,
mF = 180 – (43 + 62) =75o
Now we can use the sin rule to find length DE.
a/sinA =b/sinB Where a and b are the length opposite to angle A and B respectively.
DE/sin75=22/sin43
DE=(22 sin75)/sin43
DE=31.12 in
31.12 in
Explanation
To get the length required, lets first find angle mF,
mF = 180 – (43 + 62) =75o
Now we can use the sin rule to find length DE.
a/sinA =b/sinB Where a and b are the length opposite to angle A and B respectively.
DE/sin75=22/sin43
DE=(22 sin75)/sin43
DE=31.12 in
Answer:
31.2 inches.
Step-by-step explanation:
Given,
In triangle DEF,
m∠D = 43°,
m∠E = 62°
EF = 22 in
Since, the sum of all interior angle of a triangle is 180°,
⇒ m∠D + m∠E + m∠F = 180°
⇒ 43° + 62° + m∠F = 180°
⇒ 105° + m∠F = 180° ⇒ m∠F = 180° - 105° = 75°,
Now, by the law of sine,
[tex]\frac{sin D}{EF}=\frac{sin F}{DE}[/tex]
[tex]DE\times sin D = EF\times sin F[/tex] ( Cross multiplication ),
[tex]DE=\frac{EF sin F}{sin D}[/tex]
By substituting values,
[tex]DE=\frac{22\times sin 75^{\circ}}{sin 43^{\circ}}=\frac{21.2503681784}{0.68199836006}=31.1589725473\approx 31.2[/tex]
Thus, the measure of side DE is 31.2 inches.