Respuesta :

C and E and F are all the correct answers

Answer:

The equivalent expressions are:

C.

[tex]7^x[/tex]

D.

[tex](\dfrac{21}{3})^x[/tex]

E.

[tex]\dfrac{7^x\cdot 3^x}{3^x}[/tex]

Step-by-step explanation:

We are asked to find the algebraic expression that is equivalent to the expression:

[tex]\dfrac{21^x}{3^x}[/tex]

A)

[tex](21-3)^x[/tex]

We know that this expression is incorrect.

Since, [tex]\dfrac{a^x}{b^x}\neq (a-b)^x[/tex]

B)

7

This option is also incorrect.

Since,

[tex]\dfrac{21^x}{3^x}=(\dfrac{21}{3})^x\\\\\dfrac{21^x}{3^x}=7^x[/tex]

C)

[tex]7^x[/tex]

This option is true.

Since,

[tex]\dfrac{21^x}{3^x}=(\dfrac{21}{3})^x\\\\\dfrac{21^x}{3^x}=7^x[/tex]

D)

[tex](\dfrac{21}{3})^x[/tex]

This option is true.

Since,

[tex]\dfrac{a^x}{b^x}=(\dfrac{a}{b})^x[/tex]

E)

[tex]\dfrac{7^x\cdot 3^x}{3^x}[/tex]

This option is correct.

Since,

[tex]\dfrac{21^x}{3^x}=\dfrac{(7\cdot 3)^x}{3^x}=\dfrac{7^x\cdot 3^x}{3^x}[/tex]

F)

[tex]3^x[/tex]

This option is incorrect.

Since we get a expression as:

[tex]7^x[/tex] but not [tex]3^x[/tex]