Rewrite the rational expression( x^3-7x^2+13x-3) / (x-3) in the form q(x) +
r(x)/b(x), and then match q(x), r(x), and b(x) to the correct expressions.
Tiles are:
x^2-7x+13
x^2-4x+1
x^3-7x^2+13x-3
x-3
-3
0
pair to
q(x) =
b(x) =
r(x) =
Please help!!

Respuesta :

The correct answers are:
q(x) = 
[tex]x^2-4x+1[/tex]
b(x) = x-3
r(x) = 0

Explanation:
By using synthetic division, we would get:
   | 1   -7    13  -3
3 |      3   -12   3
---------------------------------
     1   -4      1   0

q(x) = [1 -4 1] = 
[tex]1*x^2-4x+1[/tex]
b(x) = x - 3 (Expression with which you're dividing)
r(x) = 0 (Since the last reminder is 0)

Answer:

[tex]q(x)=x^2-4x+1[/tex]

[tex]b(x)=x-3[/tex]

[tex]r(x)=0[/tex]

Step-by-step explanation:

The given rational expression is

[tex]\dfrac{x^3-7x^2+13x-3}{x-3}[/tex]

We need to write this expression as

[tex]q(x)+\dfrac{r(x)}{b(x)}[/tex]

where, q(x) is quotient, r(x) is remainder and b(x) is divisor.

[tex]b(x)=x-3[/tex]

The coefficients of dividend are 1, -7, 13 and -3.

Using synthetic division, we get

3   |       1     -7      13     -3

    |              3      -12    3

------------------------------------

            1     -4      1       0

------------------------------------

First three elements of bottom row represents the quotient and last element of bottom row represents the remainder.

[tex]q(x)=x^2-4x+1[/tex]

[tex]r(x)=0[/tex]

The given expression can be written as

[tex]x^2-4x+1+\dfrac{0}{x-3}[/tex]