Respuesta :
The resistance of a piece of wire is given by
[tex]R= \frac{\rho L}{A} [/tex]
where
[tex]\rho[/tex] is the material resistivity
L is the length of the wire
A is its cross-sectional area
Substituting the data given by the problem, we can find the value of the resistance of the wire:
[tex]R= \frac{\rho L}{A}= \frac{(1.7 \cdot 10^{-8} m)(1.3 m)}{(8.36 \cdot 10^{-6} m^2)}=2.6 \cdot 10^{-3}\Omega [/tex]
[tex]R= \frac{\rho L}{A} [/tex]
where
[tex]\rho[/tex] is the material resistivity
L is the length of the wire
A is its cross-sectional area
Substituting the data given by the problem, we can find the value of the resistance of the wire:
[tex]R= \frac{\rho L}{A}= \frac{(1.7 \cdot 10^{-8} m)(1.3 m)}{(8.36 \cdot 10^{-6} m^2)}=2.6 \cdot 10^{-3}\Omega [/tex]