Respuesta :

I'm most likely wrong because I haven't learned this yet  but I'm guessing .25 or 1/4
The answer is:   " 125.6 sq units " ;  or, write as:  " 125.6 units² " .
____________________________________________________
Explanation:
___________________________________
To solve for the "area of the shaded region" :
___________________________________
1)  We find the area of the:  "circle with radius of 11" ;  that is, the entire circle that includes the entire outer circle—incorporating the shaded region AND non-shaded region.  Record that value.
________________________________________________________
2)  Then we find the area of the: "circle with radius of 9" ; that is; the entire "inner circle" that is "inside the shaded region".   Record that value.
________________________________________________
3)  Then, we take the [area of the "circle with radius of 11"] ; and from that value, subtract the:  "[area of the circle with radius of 9"] ; to get the value of the "area of the shaded region" {that is, the "area of the blue ring"} .
________________________________________________
Let us begin:

1)  Find the area of the:  "circle with radius of 11" ;
              
The formula for the area, "A" of a circle is:

→   " A = [tex] \pi [/tex]  r² " ; 

in which:  " A = area of the circle" (in "units² " ; or "square units" ; or "sq units") ;
      
                  "[tex] \pi [/tex] = 3.14 " (approximation) ; 

                  " r = radius = 11 " ; 
____________________________________________
→ Plug in these values to solve for the "area of the circle with radius of 11" :

→  A = [tex] \pi [/tex] r² ; 

     A = (3.14) * 11² ; 

     A = (3.14) * 11 * 11 ; 

     A = (3.14) * 121 ; 

     A = 379.94 units²
__________________________________________________

2)  Now, let us find the area of the:  "circle with radius of 9" ;
              
The formula for the area, "A" of a circle is:

→   " A = [tex] \pi [/tex]  r² " ; 

in which:  " A = area of the circle" (in "units² " ; or "square units" ; or "sq units") ;
      
                  "[tex] \pi [/tex] = 3.14 " (approximation) ; 

                  " r = radius = 9 " ; 
____________________________________________
→ Plug in these values to solve for the "area of the circle with radius of 9" :

→  A = [tex] \pi [/tex] r² ; 

     A = (3.14) * 9² ; 

     A = (3.14) * 9 * 9 ; 

     A = (3.14) * 81 ; 

     A = 254.34 units²
______________________________________________________
2)  Now, let us subtract the "area of the circle with radius of 9" ; FROM: 
                                        the "area of the circle with radius of 11" ; 
_____________________________________________________

             3 7 9.   94 units²
       —   2 5 4.  34 units² 
   ________________________
             1  2 5 . 60 units²

______________________________________________________
The answer is:   " 125.6 sq units " ;  or, write as:  " 125.6 units² " .
______________________________________________________