Respuesta :
[tex]\bf \textit{difference and sum of cubes}
\\\\
a^3+b^3 = (a+b)(a^2-ab+b^2)
\\\\
a^3-b^3 = (a-b)(a^2+ab+b^2)\\\\
-------------------------------\\\\
64x^3+27~~
\begin{cases}
64=4^3\\
27=3^3
\end{cases}\implies 4^3x^3+3^3\implies (4x)^3+3^3
\\\\\\
(4x+3)[(4x)^2-(4x)(3)+(3)^2]\implies (4x+3)(16x^2-12x+9)[/tex]
Using the identity a3+b3=(a+b)(a2−ab+b2) we find:
64x3+27=(4x)3+33
=(4x+3)((4x)2−(4x)⋅3+32)
=(4x+3)(16x2−12x+9)
16x2−12x+9 has no simpler factors with real coefficients.
To check this, evaluate its discriminant:
Δ(16x2−12x+9)=(−12)2−(4×16×9)
=144−576=−432
Since Δ<0 the quadratic equation 16x2−12x+9=0 has no real roots. It has two distinct complex roots.
In case you are curious, the complex factors of 16x2−12x+9 are:
(4x+3ω) and (4x+3ω2)
where ω=−12+√32i