Respuesta :
the complete question in the attached figure
we have that
In ΔABC, the lengths of a, b, and c are 22.5 centimeters, 18 centimeters, and 13.6 centimeters
we can apply the Cosine Law to find the angles of the triangle.
find angle C
c²=a²+b²-2ab*cosC
cos C=(a²+b²-c²)/(2ab)--------> cos C=(22.5²+18²-13.6²)/(2*22.5*18)
cos C=0.7967
C=arc cos (0.7967)-----------> C=37.19°
find angle B
b²=a²+c²-2ac*cosB
cos B=(a²+c²-b²)/(2ac)--------> cos B=(22.5²+13.6²-18²)/(2*22.5*13.6)
cos B=0.60
B=arc cos (0.60)-----------> B=53.12°
the answer is
m∠B = 53.12º
m∠C = 37.19º
we have that
In ΔABC, the lengths of a, b, and c are 22.5 centimeters, 18 centimeters, and 13.6 centimeters
we can apply the Cosine Law to find the angles of the triangle.
find angle C
c²=a²+b²-2ab*cosC
cos C=(a²+b²-c²)/(2ab)--------> cos C=(22.5²+18²-13.6²)/(2*22.5*18)
cos C=0.7967
C=arc cos (0.7967)-----------> C=37.19°
find angle B
b²=a²+c²-2ac*cosB
cos B=(a²+c²-b²)/(2ac)--------> cos B=(22.5²+13.6²-18²)/(2*22.5*13.6)
cos B=0.60
B=arc cos (0.60)-----------> B=53.12°
the answer is
m∠B = 53.12º
m∠C = 37.19º
Answer:
the first one is off by ".1 the correct answer is 53.13
Step-by-step explanation:
had it on a test