Respuesta :

Ans: The equation of inverse = [tex] \frac{x+4}{3} [/tex]

Explanation:
Given function:
f(x) = 3x - 4

Step 1:
We can write f(x) as y:
y = 3x - 4

Step 2:
Interchange x with y and vice versa:
x = 3y - 4

Step 3:
Now solve for y:
x +4 = 3y
y = 
[tex] \frac{x+4}{3} [/tex] (Equation of Inverse)

Answer:

[tex]f^{-1}(x) =\frac{x+4}{3}[/tex]

Step-by-step explanation:

Given the equation:

[tex]f(x) = 3x-4[/tex]

Let y=f(x), then;

[tex]y= 3x-4[/tex]

Step 1.

Interchange x and y  in equation [1] we have;

[tex]x = 3y-4[/tex]

Step 2.

Add 4 to both sides we have;

[tex]x+4= 3y[/tex]

Step 3.

Divide both sides by 3, to solve for y:

[tex]\frac{x+4}{3} = y[/tex]

or

[tex]y=\frac{x+4}{3}[/tex]

Replace [tex]y = f^{-1}(x)[/tex]

We have;

[tex]f^{-1}(x) =\frac{x+4}{3}[/tex]

Therefore, the inverse of the given equation is, [tex]f^{-1}(x) =\frac{x+4}{3}[/tex]