Respuesta :
Ans: The equation of inverse = [tex] \frac{x+4}{3} [/tex]
Explanation:
Given function:
f(x) = 3x - 4
Step 1:
We can write f(x) as y:
y = 3x - 4
Step 2:
Interchange x with y and vice versa:
x = 3y - 4
Step 3:
Now solve for y:
x +4 = 3y
y = [tex] \frac{x+4}{3} [/tex] (Equation of Inverse)
Explanation:
Given function:
f(x) = 3x - 4
Step 1:
We can write f(x) as y:
y = 3x - 4
Step 2:
Interchange x with y and vice versa:
x = 3y - 4
Step 3:
Now solve for y:
x +4 = 3y
y = [tex] \frac{x+4}{3} [/tex] (Equation of Inverse)
Answer:
[tex]f^{-1}(x) =\frac{x+4}{3}[/tex]
Step-by-step explanation:
Given the equation:
[tex]f(x) = 3x-4[/tex]
Let y=f(x), then;
[tex]y= 3x-4[/tex]
Step 1.
Interchange x and y in equation [1] we have;
[tex]x = 3y-4[/tex]
Step 2.
Add 4 to both sides we have;
[tex]x+4= 3y[/tex]
Step 3.
Divide both sides by 3, to solve for y:
[tex]\frac{x+4}{3} = y[/tex]
or
[tex]y=\frac{x+4}{3}[/tex]
Replace [tex]y = f^{-1}(x)[/tex]
We have;
[tex]f^{-1}(x) =\frac{x+4}{3}[/tex]
Therefore, the inverse of the given equation is, [tex]f^{-1}(x) =\frac{x+4}{3}[/tex]