The function h(t)=-4.87t^2+18.75t is used to model the height of an object projected in the air, where h(t) is the height in meters and t is the time in seconds. Rounded to the nearest hundredth, what are the domain and range of the function h(t)?

The function ht487t21875t is used to model the height of an object projected in the air where ht is the height in meters and t is the time in seconds Rounded to class=

Respuesta :

Looking at the graph you can see that the domain of the function is:
 [0, 3.85]
 To find the range of the function, we must follow the following steps:
 Step 1)
 
Evaluate for t = 0
 h (0) = - 4.87 (0) ^ 2 + 18.75 (0)
 h (0) = 0
 Step 2) 
 find the maximum of the function:
 h (t) = - 4.87t ^ 2 + 18.75t
 h '(t) = - 9.74 * t + 18.75
 -9.74 * t + 18.75 = 0
 t = 18.75 / 9.74
 t = 1.925051335
 We evaluate the function at its maximum point:
 h (1.925051335) = - 4.87 * (1.925051335) ^ 2 + 18.75 * (1.925051335)
 h (1.93) = 18.05
 The range of the function is:
 [0, 18.05]
 Answer:
 
Domain: [0, 3.85]
 Range: [0, 18.05]
 option 1

Answer:

Domain: [0, 3.85]

Range: [0, 18.05]

option 1