Respuesta :
The angular velocity by definition is given by:
w = rev / t
Where:
rev: revolutions
t: time
Substituting values we have:
w = (6 * (2 * pi)) / (12)
w = 3.141592654 rad / s
Answer:
the average angular velocity of the spinner, in radians per second, for the 12-second interval is:
w = 3.141592654 rad / s
w = rev / t
Where:
rev: revolutions
t: time
Substituting values we have:
w = (6 * (2 * pi)) / (12)
w = 3.141592654 rad / s
Answer:
the average angular velocity of the spinner, in radians per second, for the 12-second interval is:
w = 3.141592654 rad / s
Answer:
3.14 rad/s is the average angular velocity of the spinner.
Step-by-step explanation:
Average angular velocity :
[tex]\omega=\frac{\Delta \theta }{\Delta t}[/tex]
Change in angular displacement Δθ= 6 revolutions
1 revolution = 360°
6 revolutions = 6 × 360° = 2160° = 37.70 rad
(1°= 0.0174533 radians )
Change in time Δt= 12 s
Average angular velocity of the spinner =
[tex]=\frac{37.70 rad}{12 s}=3.14 rad/s[/tex]
3.14 rad/s is the average angular velocity of the spinner.