Respuesta :

Answer:

The length is [tex]23\ m[/tex] and the breadth is [tex]9\ m[/tex]

Step-by-step explanation:

Let

x ----> the length of a rectangular campsite

y ----> the breadth of a rectangular campsite

we know that

The perimeter of a rectangle is equal to

[tex]P=2(x+y)[/tex]

[tex]P=64\ m[/tex]

so

[tex]64=2(x+y)[/tex]

[tex]32=(x+y)[/tex]

[tex]y=32-x[/tex] ------> equation A

The area of a rectangle is equal to

[tex]A=xy[/tex]

[tex]A=207\ m^{2}[/tex]

so

[tex]207=xy[/tex] -----> equation B

substitute equation A in equation B

[tex]207=x(32-x)\\\\207=32x-x^{2}\\\\x^{2}-32x+207=0[/tex]

Solve the quadratic equation by graphing

The solution is [tex]x=23\ m[/tex] ( I assume that the length is  greater than the breadth)

see the attached figure

Find the value of y

[tex]y=32-23=9\ m[/tex]

therefore

The length is [tex]23\ m[/tex] and the breadth is [tex]9\ m[/tex]

Ver imagen calculista