contestada

Compare the magnitude of the electromagnetic and gravitational force between two electrons separated by a distance of 2.00 m. Assume the electrons have a mass of 9.11 × 10^–31 kg and a charge of 1.61 × 10^–19 C. Round to two decimal places.
Fe = _____ × 10^–29 N
Fg = _____ × 10^–71 N
Fe/ Fg= _____ × 10^42

Please answer as soon as possible!

Respuesta :

First you need to know about two laws, which are:
1) Coulomb's law
2) Newton's law of gravitation

1.
According to Coulomb's law, Electric force between TWO charges is:
[tex]F_{e} = \frac{k*q_{1}*q_{2}}{r^{2}} [/tex] -- (A)

Where, k = 1/(4*π*epsilon_not) = [tex]9 * 10^{9}[/tex] [tex] \frac{Nm^{2}}{C^{2}} [/tex]

Both [tex]q_{1}[/tex] and [tex]q_{2}[/tex] = -1.61 x [tex]10^{-19}[/tex] C
r = Distance between the two charges = 2.00m

Plug-in the above values in (A), you would get:

[tex]F_{e}[/tex] = (9 * [tex]10^{9}[/tex] ) (1.61 * [tex]10^{-19}[/tex]  * 1.61 * [tex]10^{-19}[/tex]) / (2*2)  

[tex]F_{e}[/tex] = [tex]5.83* 10^{-29} [/tex] N

2.
According to Newton's law of gravitation:
[tex]F_{g} = \frac{Gm_{1}m_{2}}{r^{2}} [/tex] -- (B)

Where G = Gravitational constant = 6.674 * [tex]10^{-11} m^{2} kg^{-1}s^{-2}[/tex]

m1 = m2 = Mass of the electron = [tex]9.11 * 10^{-31}[/tex] kg
r = 2.0 m

Plug-in the above values in (B), you would get:

[tex]F_{g}[/tex] = (6.674 * [tex]10^{-11} [/tex]) ( [tex]9.11 * 10^{-31}[/tex]  *  [tex]9.11 * 10^{-31}[/tex]}[/tex]) / (2*2)  

[tex]F_{e}[/tex] = [tex]5.83* 10^{-29} [/tex] N

[tex]F_{e}[/tex] = [tex]1.38 * 10^{-71} N[/tex]

Now do Fe over Fg, you would get:
[tex]\frac{F_{e}}{F{g}} = 4.23 * 10^{42}[/tex]

Ans: So the blanks are:
1) 5.82
2) 1.38
3) 4.23

-i

Answer:

Fe=5.83

Fg=1.38

Fe/Fg=4.22

Explanation:

Edg. 2022 answer