Respuesta :

The sum of the first thirty consecutive whole numbers can be represented by the following series

[tex] 0+1+2+3+4+....+29\\ \\Sum \; of\; first \; 30\; whole \; numbers\; =\; Sum\; of\; first \; 29\; Natural\; Numbers\\ \\1+2+3+4+...+29 \\ \\ Formula\\ 1+2+3+....+n=\frac{n(n+1)}{2} \\ \\ Substituting\; 29\; for\; n,\; we\; get...\\ \\ 1+2+3+4+...+29=\frac{29(30)}{2}=29 \times 15=435 [/tex]

Conclusion:

The sum of the first thirty consecutive whole numbers is 435.

Answer:

435

Step-by-step explanation:

The gouse method or something.

(29*30)/2=435