Respuesta :
Answer:
[tex]m<C=62\°[/tex]
Step-by-step explanation:
we know that
In an inscribed quadrilateral opposite angles are supplementary
so
In this problem
[tex]m<D+m<B=180\°[/tex]
[tex]m<C+m<A=180\°[/tex]
step 1
Find the value of x
[tex]m<D+m<B=180\°[/tex]
substitute the values and solve for x
[tex](x+20)\°+(3x)\°=180\°[/tex]
[tex]4x=180\°-20\°[/tex]
[tex]x=160\°/4=40\°[/tex]
step 2
Find the measure of angle A
[tex]m<A=(2x+38)\°=2(40\°)+38\°=118\°[/tex]
step 3
Find the measure of angle C
[tex]m<C+m<A=180\°[/tex]
substitute the values and solve for m<C
[tex]m<C+118\°=180\°[/tex]
[tex]m<C=180\°-118\°=62\°[/tex]