Respuesta :
1. m∠1 + m∠5 = 180° and m∠1 + m∠4=180°
Given
2. m∠1 + m∠5 = m∠1 + m∠4
Substitution
3. m∠5 = m∠4
Subtraction property of equality
4. Ray YZ is parallel to Ray UV
If alternate interior angles equal, then lines are ||.
Given
2. m∠1 + m∠5 = m∠1 + m∠4
Substitution
3. m∠5 = m∠4
Subtraction property of equality
4. Ray YZ is parallel to Ray UV
If alternate interior angles equal, then lines are ||.
Answer:
1. [tex]m\angle 1+m\angle 5=180^{\circ}[/tex] and [tex]m\angle 1+m\angle 4=180^{\circ}[/tex]; given
2. [tex]m\angle 1+m\angle5=m\angle 1+m\angle4[/tex]; substitution
3.[tex]m\angle5=m\angle4[/tex]; subtraction property of equality
4. Ray YZ is parallel to ray UV; if alternate interior angles equal , then lines are parallel.
Step-by-step explanation:
Given
[tex]m\angle1+m\angle5=180^{\circ}[/tex]
[tex]m\angle 1+m\angle4=180^{\circ}[/tex]
To prove that YZ is parallel to UV.
Proof:
1.Statement: [tex]m\angle 1+m\angle5=180^{\circ}[/tex] and [tex]m\angle1+m\angle4=180^{\circ}[/tex]
Reason; Given
2. Statement: [tex]m\angle1+m\angle5=m\angle 1+m\angle4[/tex]
Reason: By using substitution property
3.Statement: [tex]m\angle5=m\angle4[/tex]
Reason: Subtraction property of equality.
4.Statement: Ray YZ is parallel to Ray UV
Reason: If alternate interior angles equal, then lines are parallel.