Respuesta :
Hey there Ruben!
[tex]\boxed{\boxed{((((x^4)*y)+((8*(x^3))*y))-((6*(x^2))*(y^2)))-(24*3xy^2)}} \\ \\ (let's \ simplify \ some \ number's \ down) \\ \\ \boxed{\boxed{ ((((x4)*y)+((8*(x3))*y))-((2*3x2) *y2))-(24*3xy2)}} \\ \\ \\ Pull \ out \ like \ factors : \\ \\ \boxed{\boxed{ x4y + 8x^3y - 6x2y^2 - 48xy^2 = xy * (x3 + 8x^2 - 6xy - 48^y) }} \\ \\ \\ (TAKE \ NOTICE) \swarrow\swarrow\swarrow\swarrow \swarrow\swarrow\swarrow\swarrow\swarrow\swarrow \\ \\ \\ [/tex]
[tex]\boxed{\boxed{\boxed{ (((((x^4)*y)+(23x^3*y))-(2*3x2y2))}}} \\ \\ \\ \boxed{\boxed{\boxed{-(24*3xy2))-xy*(x3+8x2-6xy-48y) = \boxed{0}}}}}[/tex]
I hope this helps you!
[tex]\boxed{\boxed{((((x^4)*y)+((8*(x^3))*y))-((6*(x^2))*(y^2)))-(24*3xy^2)}} \\ \\ (let's \ simplify \ some \ number's \ down) \\ \\ \boxed{\boxed{ ((((x4)*y)+((8*(x3))*y))-((2*3x2) *y2))-(24*3xy2)}} \\ \\ \\ Pull \ out \ like \ factors : \\ \\ \boxed{\boxed{ x4y + 8x^3y - 6x2y^2 - 48xy^2 = xy * (x3 + 8x^2 - 6xy - 48^y) }} \\ \\ \\ (TAKE \ NOTICE) \swarrow\swarrow\swarrow\swarrow \swarrow\swarrow\swarrow\swarrow\swarrow\swarrow \\ \\ \\ [/tex]
[tex]\boxed{\boxed{\boxed{ (((((x^4)*y)+(23x^3*y))-(2*3x2y2))}}} \\ \\ \\ \boxed{\boxed{\boxed{-(24*3xy2))-xy*(x3+8x2-6xy-48y) = \boxed{0}}}}}[/tex]
I hope this helps you!
the answer is xy(x+8)(x^2-6y)
see attached picture for steps:
see attached picture for steps: