A farmer has 300 ft of fencing with which to enclose a rectangular pen next to a barn. The barn itself will be used as one of the sides of the enclosed area.



What is the maximum area that can be enclosed by the fencing?

Enter your answer in the box.


ft²

Respuesta :

Asked and answered elsewhere.
https://brainly.com/question/8970296

Answer

Maximum area A_max = 11250 ft^2

Step-by-Step Explanation

Declaring Variables:-

The length of the rectangle = y

The width of the rectangle = x

Solution:-

- The perimeter of a rectangle can be expressed using the above two variables as follows:

                             Perimeter (P) = 2*Length + 2*Width

                                                     = 2* ( x + y )

- Since the barn is used as one of the sides (let's say y) we can subtract y

we don't need fencing for this side. The length of the fence required L is:

                            Length (L) = P - y

                                                = 2*x + y

- We are given 300 feet of fencing. So we equate the length equal to 300 and develop a linear relationship between width and length of the barn.

                              300 = 2x + y

                              y = 300 - 2x

- The area (A) of the rectangle is given by the following expression:

                              A = Length*width

                              A = x*y

- Substitute the relationship developed between x and y in the Area (A) expression above. Then we have:

                              A = x*(300 - 2x)

                              A = 300x - 2x^2

- We will take first derivative of the expression of area (A) developed with respect to x and find the critical point of the area function by setting the first derivative A'(x) = 0.

                             A(x) = 300x - 2x^2

                             A'(x) = 300 - 4x

                             0 = 300-4x

                             x = 300 / 4 = 75 ft

- The critical point of the given function lies for the width (x) of 75 ft. We will plug in the critical value x = 75 ft back into the original function of Area and find the maximum area.

                             A(x) = 300x - 2x^2

                             A(75) = 300 (75) - 2(75)^2

                             A_max = A(75) = 11250 ft^2

- The maximum area that can be enclosed by the fencing is 11250 ft²