Respuesta :

The equation of the line in slope-intercept form is:

[tex] y = mx + b
[/tex]

Where,

m: slope of the line

b: cutting point with the y axis.

For the slope of the line we have:

[tex] m=\frac{y2-y1}{x2-x1} [/tex]

Substituting values we have:

[tex] m=\frac{-4-8}{-6-4} [/tex]

Rewriting we have:

[tex] m=\frac{-12}{-10} [/tex]

[tex] m=\frac{6}{5} [/tex]

Then, we choose an ordered pair:

[tex] (xo, yo) = (4, 8)
[/tex]

Substituting values in the generic equation of the line we have:

[tex] y-yo = m (x-xo)
[/tex]

[tex] y-8 = \frac{6}{5} (x-4) [/tex]

Rewriting we have:

[tex] y = \frac{6}{5}x -\frac{24}{5} + 8 [/tex]

[tex] y = \frac{6}{5}x -\frac{24}{5} + \frac{40}{5} [/tex]

[tex] y = \frac{6}{5}x + \frac{16}{5} [/tex]

Answer:

The equation of the line in slope-intercept form is:

[tex] y = \frac{6}{5}x + \frac{16}{5} [/tex]

Answer:

y = [tex]\frac{6}{5} x + \frac{16}{5}[/tex]

Step-by-step explanation:

The slope-intercept form is y = mx + b, where "m" is the slope and 'b" is the y-intercept.

Given: G(-6, -4) and E(4, 8)

Now we can use these points G(-6, -4) and E(4, 8) and find the slope.

Slope (m) = [tex]\frac{y2 - y1}{x2 - x1}[/tex]

Here x1 = -6, y1 = -4, x2 = 4 and y2 = 8

Plug in these values in the above formula, we get

slope(m) = [tex]\frac{8 - (-4)}{4 -(-6)}[/tex]

= [tex]\frac{12}{10}[/tex]

Slope (m) = [tex]\frac{6}{5}[/tex]

Now we can use the formula (y - y1) = m(x - x1) and find the required equation.

We can plug in m value and (x1, y1) value and find the equation.

y - (-4) = 6/5(x - (-6))

y + 4  = 6/5(x + 6)

Using the distributive property a(b + c) = ab + ac, we get

y + 4 = 6/5 x + 36/5

y = 6/5 x + 36/5 - 4

y =6/5 x +([tex]\frac{(36 - 20)}{5}[/tex]

y = [tex]\frac{6}{5} x + \frac{16}{5}[/tex]