Respuesta :
2k(7-5k)+11=6k+3(k^2-1)
⇒ (2k)* 7 - (2k)* (5k) +11= 6k+ 3* k^2- 3*1 (distributive property)
⇒ 14k -10k^2 +11= 6k+ 3k^2 -3
⇒ (14k -14k) +(-10k^2 +10k^2)+ (11-11) = (6k-14k)+ (3k^2+10k^2)+ (-3-11)
⇒ 13k^2- 8k- 14= 0
⇒ 13 (k^2- 8/13k- 14/13)=0
⇒ (k- ((4+3*sqrt(22))/13))* ((k- ((4-3*sqrt(22))/13))= 0
⇒ k= (4+3*sqrt(22))/13 or k= (4-3*sqrt(22))/13).
Hope this helps~
⇒ (2k)* 7 - (2k)* (5k) +11= 6k+ 3* k^2- 3*1 (distributive property)
⇒ 14k -10k^2 +11= 6k+ 3k^2 -3
⇒ (14k -14k) +(-10k^2 +10k^2)+ (11-11) = (6k-14k)+ (3k^2+10k^2)+ (-3-11)
⇒ 13k^2- 8k- 14= 0
⇒ 13 (k^2- 8/13k- 14/13)=0
⇒ (k- ((4+3*sqrt(22))/13))* ((k- ((4-3*sqrt(22))/13))= 0
⇒ k= (4+3*sqrt(22))/13 or k= (4-3*sqrt(22))/13).
Hope this helps~
Answer:
k= (4+3*sqrt(22))/13 or k= (4-3*sqrt(22))/13).
Step-by-step explanation:
2k(7-5k)+11=6k+3(k^2-1)
We move all terms to the left:
2k(7-5k)+11-(6k+3(k^2-1))=0
We add all the numbers together, and all the variables
2k(-5k+7)-(6k+3(k^2-1))+11=0
We multiply parentheses
-10k^2+14k-(6k+3(k^2-1))+11=0
We calculate terms in parentheses: -(6k+3(k^2-1)), so:
6k+3(k^2-1)
We multiply parentheses
3k^2+6k-3
Back to the equation:
-(3k^2+6k-3)
We get rid of parentheses
-10k^2-3k^2+14k-6k+3+11=0
We add all the numbers together, and all the variables
-13k^2+8k+14=0
a = -13; b = 8; c = +14;
Δ = b2-4ac
Δ = 82-4·(-13)·14
Δ = 792
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
k1=−b−Δ√2ak2=−b+Δ√2a
The end solution:
Δ−−√=792−−−√=36∗22−−−−−−√=36−−√∗22−−√=622−−√
k1=−b−Δ√2a=−(8)−622√2∗−13=−8−622√−26
k2=−b+Δ√2a=−(8)+622√2∗−13=−8+622√−26