Respuesta :

s1m1
If sides of the square are 1 ft the diagonal we can find by using Pythagorean since the sides are perpendicular and form right triangles.
Diagonal ^2= 1^2 +1^2= 1+1=2 so
diagonal = sqrt (2)
The answer is:  " 1.4142 ft " .
__________________________________________________
Explanation:
__________________________________________________
Note:  All four (4) sides of a square have the same length.
__________________________________________________
The "diagonal" of a square forms a right triangle, in which the "diagonal" is the hypotenuse; and the two (2) sides of the square are the other two (2) angles.
__________________________________________________

So, we have:

       |   \
1 ft   |      \     c
       |          \
       |_           \
       | _| _ _ _ _\
            1 ft.
__________________________________
Solve for "c" ; the "hypotenuse" .
__________________________________
Use the Pythogorean theorem (since this is a "right triangle") ; to solve for "c" ; 

a² + b² = c²  ;

Rearrange the equation, as follows:

↔  c² = a² + b² ; 

  in which:  a = the length of one side of the triangle = 1 (given) ;
                   b = the length of the other side of the triangle = 1 (given) ;
                   c = the length of the hypotenuse of the triangle ;
                                → for which we wish to solve;

Given:   c² = a² + b² ;

Plug in our known values for "a" and "b" ; to solve for "c" ; 
 
             →   c²  =  1²  +  1²  ; 

                         =  (1 * 1) + (1 * 1) ;
 
                         =  1  +  1 ;

             →   c² =  2 ; 

Now, take the "positive square root" of each side of the equation ; 
          to isolate "c" on one side of the equation ; & to solve for "c" ; 

             →   +√(c²) =  +√2 ;

to get:      →    c =   √2 ft.;  or write as:  " 1.414213562373095 ft." ;
                                                   → round to: "1.4142 ft."
_____________________________________________________
Other:  

Note:  The "diagonal" of a square forms two right (2) triangles.  Each triangle is a  " 45°-45°-90° " triangle.  

Note that the "diagonal" of such a triangle is the hypotenuse;  and the length of each of two sides of such a triangle will be the same; (since all 4 (four) side lengths of a square are the same.  For such:  "45°-45°-90° " triangles, The lengths of the sides take the form:  "a, a, and "a√2" ; in which "a" and a" (which are equal, of course) represent the 2 sides of the triangle, and "a√2" represents the hypotenuse.   

This is consistent with our calculations: 

a = 1 ; a = 1 ;  and "a√2" — which is the hypotenuse—is:  "1√2" = "√2" .
__________________________________________________________