Respuesta :
Answer:
sin B = 0.65
Explanation:
To solve this question, we will need to use the sine law that is shown in the attached image.
Here, we have:
c = 8
b = 6
angle C = 60°
Therefore:
[tex] \frac{b}{sin(B)} [/tex] = [tex] \frac{c}{sin(C)} [/tex]
[tex] \frac{6}{sin(B)} [/tex] = [tex] \frac{8}{sin(60)} [/tex]
sin B = 0.649 which is approximately 0.65
Hope this helps :)
sin B = 0.65
Explanation:
To solve this question, we will need to use the sine law that is shown in the attached image.
Here, we have:
c = 8
b = 6
angle C = 60°
Therefore:
[tex] \frac{b}{sin(B)} [/tex] = [tex] \frac{c}{sin(C)} [/tex]
[tex] \frac{6}{sin(B)} [/tex] = [tex] \frac{8}{sin(60)} [/tex]
sin B = 0.649 which is approximately 0.65
Hope this helps :)
Answer:
[tex]\sin \left(B\right)=\frac{3\sqrt{3}}{8}[/tex]
Step-by-step explanation:
Given : In triangle ABC, c = 8, b = 6, and ∠C = 60°
We have to find the value of [tex]\sin B[/tex]
Consider the given triangle ABC,
LAWS OF SINE : States that for a given triangle AbC, with a, b, c and Side a faces angle A,side b faces angle B and side c faces angle C.
We have,
[tex]\frac{a}{\sin A}=\frac{b}{\sin B}= \frac{c}{\sin C}[/tex]
Consider the last two ratios, we have,
[tex]\frac{b}{\sin B}= \frac{c}{\sin C}[/tex]
Substitute, the value , we have,
c = 8, b = 6, and ∠C = 60°
[tex]\frac{6}{\sin B}= \frac{8}{\sin 60^{\circ}}[/tex]
Put [tex]\sin \left(60^{\circ \:}\right)=\frac{\sqrt{3}}{2}[/tex]
we have,
[tex]\frac{6}{\sin \left(B\right)}=\frac{8}{\frac{\sqrt{3}}{2}}[/tex]
Simplify, we have,
[tex]\sin \left(B\right)=\frac{3\sqrt{3}}{8}[/tex]