a)
[tex]\bf g'(x)=\stackrel{product~rule}{2x\cdot f(x)+x^2\cdot f'(x)}\quad
\begin{cases}
x=5\\
f(5)=5\\
f'(5)=5
\end{cases}
\\\\\\
g'(5)=2(5)\cdot f(5)+(5)^2\cdot f'(5)\implies g'(5)=50+500\\\\\\ g'(5)=550\\\\
-------------------------------\\\\
g(5)=(5)^2f(5)\implies g(5)=125
\\\\\\
\stackrel{\textit{point-slope form}}{y- y_1= m(x- x_1)}
\begin{cases}
x=5\\
y=125\\
\stackrel{m}{g'(5)}=550
\end{cases}\implies y-125=550(x-5)
\\\\\\
y-125=550x-2750\implies y=550x+400[/tex]
b)
[tex]\bf h'(x)=\stackrel{quotient~rule}{\cfrac{f'(x)(x-6)~~-~~f(x)\cdot 1}{(x-6)^2}}\quad
\begin{cases}
x=5\\
f(5)=5\\
f'(5)=5
\end{cases}
\\\\\\
h'(5)=\cfrac{f'(5)(5-6)~~-~~f(5)\cdot 1}{(5-6)^2}
\\\\\\
h'(5)=\cfrac{5(-1)-5}{(-1)^2}\implies h'(5)=-10\\\\
-------------------------------\\\\[/tex]
[tex]\bf h(5)=\cfrac{f(5)}{5-6}\implies h(5)=\cfrac{5}{-1}\implies h(5)=-5
\\\\\\
\stackrel{\textit{point-slope form}}{y- y_1= m(x- x_1)}\quad
\begin{cases}
x=5\\
y=-5\\
\stackrel{m}{-10}
\end{cases}\implies y-(-5)=-10(x-5)
\\\\\\
y+5=-10x+50\implies y=-10x+45[/tex]