Respuesta :
Let the principal be 'x' then the Amount will be 4x.
As the interest is compounded monthly:
Rate of interest = 10.1 % = 10.1/(100*12) = 0.101/12
Time = 12t
Amount = Principal[1 + Rate/100]
⇒ 4x = x[1 + 0.101/12]¹²t
⇒ 4x/x [1 + 0.008416667]¹²t
⇒ 4 = [1.008416667]¹²t
⇒ log(4) = log[1.008416667]¹²t
⇒ 0.602059991327 = [0.003640014891]¹²t
⇒ 12t = 0.602059991327/0.003640014891
⇒ 12t = 165.400419876
⇒ t = 165.400419876/12
t = 13.78 years or 13 years 9 months.
So, it is about 13 years 9 months she will have 4 times the amount of money.
As the interest is compounded monthly:
Rate of interest = 10.1 % = 10.1/(100*12) = 0.101/12
Time = 12t
Amount = Principal[1 + Rate/100]
⇒ 4x = x[1 + 0.101/12]¹²t
⇒ 4x/x [1 + 0.008416667]¹²t
⇒ 4 = [1.008416667]¹²t
⇒ log(4) = log[1.008416667]¹²t
⇒ 0.602059991327 = [0.003640014891]¹²t
⇒ 12t = 0.602059991327/0.003640014891
⇒ 12t = 165.400419876
⇒ t = 165.400419876/12
t = 13.78 years or 13 years 9 months.
So, it is about 13 years 9 months she will have 4 times the amount of money.