Respuesta :

[tex]\frac{x^{2} + x - 2}{6x^{2} - 3x} = \sqrt{2x} + \frac{3x^{2}}{2}[/tex]
[tex]\frac{x^{2} + 2x - x - 2}{3x(x) - 3x(1)} = \frac{2\sqrt{2x}}{2} + \frac{3x^{2}}{2}[/tex]
[tex]\frac{x(x) + x(2) - 1(x) - 1(2)}{3x(x - 1)} = \frac{2\sqrt{2x} + 3x^{2}}{2}[/tex]
[tex]\frac{x(x + 2) - 1(x + 2)}{3x(2x - 1)} = \frac{2\sqrt{2x} + 3x^{2}}{2}[/tex]
[tex]\frac{(x - 1)(x + 2)}{3x(2x - 1)} = \frac{2\sqrt{2x} + 3x^{2}}{2}[/tex]
[tex]\frac{(x - 1)(x + 2)}{3x(2x - 1)} = \frac{2\sqrt{2x} + 3x^{2}}{2}[/tex]
[tex]3x(2x - 1)(2\sqrt{2x} + 3x^{2}) = 2(x + 2)(x - 1)[/tex]
[tex]3x(2x(2\sqrt{2x} + 3x^{2}) - 1(2\sqrt{2x} + 3x^{2}) = 2(x(x - 1) + 2(x - 1))[/tex]
[tex]3x(2x(2\sqrt{2x}) + 2x(3x^{2}) - 1(2\sqrt{2x}) - 1(3x^{2})) = 2(x(x) - x(1) + 2(x) - 2(1)[/tex]
[tex]3x(4x\sqrt{2x} + 6x^{3} - 2\sqrt{2x} - 3x^{2}) = 2(x^{2} - x + 2x - 2)[/tex]
[tex]3x(4x\sqrt{2x} - 2\sqrt{2x} + 6x^{3} - 3x^{2}) = 2(x^{2} + x - 2)[/tex]
[tex]3x(4x\sqrt{2x}) - 3x(2\sqrt{2x}) + 3x(6x^{3}) - 3x(3x^{2}) = 2(x^{2}) + 2(x) - 2(2)[/tex]
[tex]12x^{2}\sqrt{2x} - 6x\sqrt{2x} + 18x^{4} - 9x^{3} = 2x^{2} + 2x - 4[/tex]
[tex]12x^{2}\sqrt{2x} - 6x\sqrt{2x} = -18x^{4} + 9x^{3} + 2x^{2} + 2x - 4[/tex]
[tex]6x\sqrt{2x}(2x) - 6x\sqrt{2x}(1) = -9x^{3}(2x) - 9x^{3}(-1) + 2(x^{2}) + 2(x) - 2(2)[/tex]
[tex]6x\sqrt{2x}(2x - 1) = -9x^{3}(2x - 1) + 2(x^{2} + x - 2)[/tex]